
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 15, PP. 469476 (1971) 

Stress-Strain Behavior of SAN/Glass 
Bead Composites Above the Glass Transition 

Temperature 
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Washington University, St .  Louis, lMissouri 631 SO 

Synopsis 
Relaxation and stress-strain behavior of SAN-glass bead composites are studied above 

the glass transition temperature. The strain imposed on the polymeric matrix of the 
composite is defined as e p  = ec/(l - @'la). Stress relaxation data for the filled polymer 
which is independent of strain can be calculated by multiplying the relaxation modulus 
(at a certain strain) by (1 + e p ) .  Stress-strain curves a t  constant strain rate and for 
different aoncentrations of the filler can be shifted to form a master curve independent of 
filler content if the tensile stress is plotted versus ep .  The relaxation modulus increases 
with increasing the filler concentration and can be predicted by a modified Kerner equa- 
tion a t  110°C. 

INTRODUCTION 

In  a recent publication,' the behavior of SAN (styrene-acrylonitrile 
copolymer)-glass bead composites in the glassy region was described. 
The behavior of similar composites in the region above the glass transition 
temperature is discussed here. The quantitative analysis of stress-strain 
data for even unfilled polymers a t  high extensions is not straightforward, 
Obviously, it is much more complicated to analyze similar data for filled 
polymers. Smith2 suggested a simple equation for calculation of strain 
in the continuous polymeric matrix as a function of the composite strain 
and the filler content. Essentially, the same equation is used in this work 
and the significance of the strain in the polymer is shown by using a semi- 
empirical quantitative analysis. 

Composites of a thermoplastic matrix and particulate fillers have been 
studied by several researchers above the glass transition temperature. 
Lande13 studied the dynamic mechanical properties of PIB-glass bead 
composites. In  his work, the temperature shift factors for the composites 
were nearly identical to those for the unfilled polymer. The Guth-Small- 
wood equation405 was found appropriate for the prediction of the stiffness 
in the long-time region. The dewetting time in stress relaxation experi- 
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ments for plasticized PVC-CaC03 composites has been shown to depend 
on the filler concentration, decreasing as the filler content is increased.6 
The effect of filler concentration on tensile properties of highly filled, 
crosslinked polyurethane rubber was also studied.' In this work, the 
mechanical behavior a t  low extensions can be represented by a generalized 
Maxwell model, and the modulus increase with increasing the filler content 
is satisfactorily described by an empirical modification of the Eilers 
equation.8 

EXPERIMENTAL 

Preparation techniques for SAN (Lustran A, Monsanto Co.)-glass 
bead composites were described in a previous paper.' Test specimens 
were 6-in. long strips, + in. wide and 0.1 in. thick. A gage of 2 in. was used 
in all tests. 

RESULTS AND DISCUSSION 
It has been shown that the relaxation modulus of an unfilled polysulfone 

is time and strain de~endent .~ However, if strain is defined as ln(Z/Zo) 
and a correction is made for the decrease of cross-sectional area, then the 
relaxation modulus is only time dependent at any given temperature. 
Other definitions must be used for filled polymers. 

Smith2 has shown by a simple theoretical analysis that 

e, = ep(l - 1.1054''8) (1) 

where 4 is the volume fraction of filler, e p  is the strain in the polymer, and 
ec  is the strain imposed on the composite. The data obtained in the present 
work were analyzed by using the equation e, = e p ( l  - K4'la), and the 
best fit was obtained for K equal to unity; thus, the definition of strain 
in the polymer in the present work is as follows: 

The relaxation modulus for filled polymers depends on time and strain 
at a constant temperature. Analysis of experimental data shows that the 
ratio of two relaxation moduli (for a certain composite) at a common time 
but at different strains is practically independent of time within the range 
of strain and time that was studied. Therefore, stress relaxation curves 
for a filled polymer at  different strains e c  can be shifted along the modulus 
axis to a reference curve at a reference strain. This procedure has been 
used in the past for unfilled polymers.'O 

Further analysis of the experimental data has shown that the above- 
mentioned modular ratio is a function of the strains imposed on the polymer. 
This function can be described as follows: 
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TABLE I 
Calculated 6, Values for Two Filler Concentrations and 

Different Composite Strains eC 

4 = 0.213; 1 - +'/l = 0.403 4 = 0.427; 1 - +'/' = 0.247 

€ 6  eP 1 + e p  tP 1 + t p  

0.05 - - 0.202 1.202 
0.10 0.248 1.248 0.404 1.404 
0.20 0.496 1.496 0.808 1.808 
0.30 0.744 1.744 - - 

The term (1 + e,) apparently accounts for the reduction in cross-sectional 
area of the polymer that is "isolated" from the composite. 

In Table I, calculated e p  values according to eq. (2) and (1 + e,) values 
to be used in eq. (3) are shown for two filler concentrations and for several 
levels of composite strain. 

TABLE I1 
Effect of Strain on Relaxation Modulus, E,(t), at 127'Ca 

~~ 

1 
2 
3 
5 

10 
20 
40 

7.10 6.05 5.75 1.17 
5.50 4.65 4.15 1.18 
4.60 3.90 3.30 1.18 
3.65 3.10 2.65 1.18 
2.55 2.15 1.80 1.19 
1.60 1.40 1.15 1.14 
1.07 0.90 0.77 1.19 

Average 1.18 
Predicted, eq. (3) 1.20 

1.23 
1.32 
1.40 
1.37 
1.41 
1.39 
1.39 
1.36 
1.40 

1.05 
1.12 
1.18 
1.17 
1.19 
1.22 
1.17 
1.16 
1.17 

a Modulus units are (dynes/cm2) X 4 = 0.213. 

TABLE I11 
Effect of Strain on Relaxation Modulus E,(t)  a t  127'0 

Time, min 

1 
2 
3 
5 

10 
20 
40 

EO.O5(t) 

17.9 
11.7 
9.60 
7.20 
4.40 
2.60 
1.45 

Eo.cdt) 

Eo.l(t) Ea.z(t) Eo.i(t) 

15.6 11.0 1.15 
10.0 7.50 1.17 
8.06 5.95 1.19 
6.03 4.55 1.19 
3.74 2.83 1.17 
2.24 1.76 1.16 
1.28 1.00 1.13 

Average 1.17 
Predicted, eq. (3) 1.17 

1.62 
1.55 
1.62 
1.58 
1.55 
1.48 
1.45 
1.57 
1.51 

1.42 
1.33 
1.36 
1.32 
1.32 
1.28 
1.28 
1.33 
1.29 

8 Modulus units are (dynes/cm2) x 10-6; r p  = 0.427. 
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TABLE IV 
Strain-Independent Modulus Calculated from Relaxation Data at Different Strains 

at 127°C~ 

Time, min. 1.248 X Eo.i(t) 1.496Eo.*(t) 1.744Eo.&) 

1 8.85 9.05 10.0 
2 6.85 6.95 7.20 
3 5.75 5.85 5.75 
5 4.55 4.65 4.62 

10 3.18 3.21 3.14 
20 2.00 2.10 2.00 
40 1.33 1.35 1.34 

* Modulus units are (dynes/cm*) X10-6; + = 0.217. 

In  Table 11, relaxation data for 4 = 0.213 and for three different strains 
are shown. The 
average experimental ratios are in good agreement with the predicted 
ratios as calculated with eq. (3). A similar conclusion can be drawn from 
Table 111, which summarizes experimental and calculated results for 4 = 
0.427. 

In  light of this conclusion, the relaxation modulus of the composite 
Ec(t)  independent of strain is defined as follows: 

The modular ratios are practically independent of time. 

In  Table IV, the stress relaxation modulus independent of strain is tabu- 
lated for experimental data a t  three different strains. For linearly visco- 
elastic bodies, stress-strain curves a t  a constant strain rate can be calcu- 
lated from relaxation datag," by using the following e q u a t i ~ n ' ~ ~ ' ~  

Equation (5) was found appropriate for unfilled polysulfone and poly- 
carbonate above their glass transition temperatures if proper definitions 
of strain and strain rate are used.g In the present case, the relaxation 
data given in Table IV is believed to be strain independent, and one can 
try to use it for calculation of stress-strain curves. In order to extend the 
relaxation data given in Table IV to the region of shorter times, which is 
necessary for the integration of eq. (5), stress relaxation data at 118°C 

TABLE V 
E&) as a Function of Time at 127°C 

0.025 0.05 0 . 1  0.15 0.25 0.5 0.75 1 
min min min min min min min min 

EdtP 22.4 18.8 15.8 14.2 12.5 10.3 9.13 8.85 

a Units are (dynes/cm*) x 10-8; 4 = 0.213. 
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where shifted to the reference curve at 127°C. The strain-independent 
stress relaxation moduli in the time range from 0.025 to 1 min is given in 
Table V. By using the data given in Tables IV and V, the integral in eq. 
(5) can be evaluated. Calculated stress-strain curves at two strain rates 

t 0.1 rn i n-' 

n -  

L -  

n n 

E -  

I I I I 

0.1 0.2 
Strain cC 

Fig. 1. Comparison of experimental stressstrain curves with calculated curves accord- 
(-) experimental; (---) ing to eq. (5) for + = 0.213 and a temperature of 127°C: 

calculated. 

1 

Strain sC 

Fig. 2. Stress vs. composite strain for different concentrations of glass beads; GC = 0.005 
min-', temperature equals 127OC. 
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are shown in Figure 1 along with the experimental curves. The calculated 
and experimental curves have similar shapes; however the agreement 
is not entirely satisfactory. Undoubtedly, additional comparison of 
calculated stress-strain curves according to eq. (5) with experimental 
curves is required for filled polymers. 

In Figure 2, stress-strain curves for different concentrations of glass 
beads at  a constant strain rate are shown. At a given strain, E ~ ,  the stress 
increases with increasing filler concentration. This is typical for filled 

E . 

Fig. 3. Stress vs. polymer strain for different concentrations of glass beads; 6, = 0.005 
min-l, temperature equals 127°C. 
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Fig. 4. Relaxation moduli at 110°C vs. time for different concentrations of glass beads. 
Data for unfilled SAN are also compared with calculated values by wing the modified 
Kerner equation; (0) data for unfilled polymer. 
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polymers above their glass transition temperature. In  Figure 3, the data 
of Figure 2 are replotted as the stress versus strain in the polymer. Anal- 
ysis of these curves shows that the ratio of two stresses for different glass 
bead concentrations, but a t  a common e p ,  is independent of e,. According 
to this result, the curves can be shifted along the stress axis to produce a 
master curve. In Figure 3, the stress-strain curves are also shifted to the 
curve for the unfilled SAN and are in good agreement with the experi- 
mental points for the unfilled polymer. The shift factors a, are 1.0, 1.3, 
1.95, and 4.5 for 0.0, 0.213, 0.427, and 0.536 volume fractions of glass 
beads, respectively. Attempts to predict the values of a, have been 
unsuccessful so far. 

The effect of glass bead concentration on the relaxation modulus was 
studied at  llO"C, which is close to the transition temperature of the filled 
polymer. In  Figure 4, the relaxation modulus at 110°C is plotted versus 
time for different concentrations of glass beads. The modulus at a certain 
time increases with increasing the filler content as predicted by Kerner.14 
A good agreement between the experimental and calculated relative 
moduli was obtained by a modified Kerner equation, which was recently 
suggested by Lewis and Nie1~en.I~ The modified Kerner equation was 
confirmed for the relative storage modulus in shear of epoxy-glass bead 
composites by these authors. 

Assuming that E J E ,  = G,/Gp, the modified Kerner equation can be 
written as follows: 

where 

7 - 5vp 
8 - lovp 

G d G ,  - 1 
GdG,  + A 

A =  = 1.5, B = 

# = [ 1 +  (-)+I +m2 
1, and 

The function # is the modification of Lewis and Nielsen which accounts for 
the maximum packing fraction +m. Poisson's ratio for the polymer v P  
above its glass transition is equal to 0.5. The ratio of the modulus of glass 
beads G,  to the modulus of the rubbery polymer G, is very large compared 
to unity; thus, B A 1; +m = 0.64. 

Equation (8) was used for the epoxy-glass bead composites while for the 
SAN-glass bead composites, eq. (7) is found to be more satisfactory. 
In  Figure 4, calculated Ep(t)  values from data on filled SAN is shown to be 
in a good agreement with the experimental relaxation modulus for the 
unfilled polymer. At 127"C, the modular ratio is found to be time de- 
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pendent, which cannot be predicted by any of the theoretical reinforce- 
ment equations. 
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